Are phase-field methods applicable to biological crystallization processes?

Nyomtatóbarát változatNyomtatóbarát változat
PhD típus: 
Fizikai Tudományok Doktori Iskola
Év: 
2019/2020
Témavezető: 
Név: 
Gránásy László
Email cím: 
granasy.laszlo@wigner.mta.hu
Kutatóintézet/Tanszék: 
Wigner Research Centre for Physics
Beosztás: 
Tudományos tanácsadó
Tudományos fokozat: 
MTA Doktora
Konzulens: 
Név: 
Virosztek Attila
Email cím: 
virosztek.attila@wigner.mta.hu
Intézet: 
BME TTK Fizika Tanszék
Beosztás: 
Egyetemi tanár
Tudományos fokozat: 
MTA Doktora
Leírás: 

The computational materials science team of the supervisor investigates how far the mathematical methods developed in materials science can be applied for modelling solidification processes in biological systems. During biomineralization hierarchically structured organic-inorganic composites of unique properties form, where the unique properties originate from their microstructure. Examples for biomineralization are the formation of bones, teeth, kidney stones, and deposition of cholesterol on the walls of blood vessels, or the creation of diatom and mollusk shells, and coral-skeletons.
This investigation is being performed in cooperation with experimental scientists at the Center for Molecular Bioengineering of the Technische Universität Dresden, Germany and the University of Wisconsin, USA.

Computational materials science is an essential part of knowledge based materials design. Analyzing the solidification/crystallization of metals, polymers, plastics, and composites, efficient modeling tools have been worked out in the past decades for describing complex solidification processes and the evolution of microstructure. A method of choice in this area is a specific version of the phase-field model developed by our team that captures crystallization by using appropriate order parameters such as the phase-field that monitors the structural changes, the concentration field representing the local composition, and the orientation field that reflects the local crystallographic orientation. This technique will be applied to address various aspects of biological crystallization processes.

Although the planned work qualifies as fundamental research, besides its scientific interest, the knowledge gained may contribute to the developing environment-friendly ambient temperature technologies for producing hierarchically structured composites.

This research is supported by the Frontline Excellence Program of the National Office of Research, Development and Innovation, Hungary.

For background information see papers at: http://www.phasefield.hu

Further information: http://www.esrf.eu/home/news/general/content-news/general/molluscs-use-thermodynamics-to-create-complex-morphologies-with-exceptional-properties.html

https://mta.hu/tudomany_hirei/fazismezo-modellezes-es-biomineralizacio-ahol-az-anyagtudomany-talalkozik-a-biologiaval-109127

Elvárások: 

Statistical physics of phase transitions, ability to develop computer codes, programming on CPU and GPU clusters. Experience in numerical solving of coupled stochastic partial differential equations is preferable. English and Hungarian language.

Munkahely neve: 
MTA Wigner FK
Munkahely címe: 
1121 Budapest, Konkoly Thege M. út 29-33