Investigation of heterogeneity effects in network models

Nyomtatóbarát változatNyomtatóbarát változat
Doctoral school: 
Fizikai Tudományok Doktori Iskola
Year/Semester: 
2022/2023/1
Supervisor
Name: 
Géza Ódor
Email: 
odor.geza@ek-cer.hu
Institute: 
Centre for Energy Research (EK)
Job title: 
Scientific Advisor
Academic degree: 
Doctor of HAS
Consulant
Name: 
Imre Varga
Email: 
varga.imre@ttk.bme.hu
Institute: 
Department of Theoretical Physics
Job title: 
Associate Professor
Academic degree: 
PhD
Description: 

Network inhomogeneities can strongly affect the critical dynamics of spreading models if the graph dimension is finite,
causing large fluctuations and nonuniversal power-laws in extended control parameter spaces. This provides an alternative
or an extension of self-organized criticality, observed in nature very frequently. These Griffiths Effects (GE) are generated
by rare-regions and can be observed even in finite scale-free graphs. Real networks are very often modular, that may
enhance GE-s and may lead to true Griffiths phases, where the fluctuations diverge. Participation in the research of GE-s
in various network models with large scale simulations or by other methods would be the target of this topic. Besides
spreading models, applicable to pandemics, we study synchronisation transitions from this point of view in brain and in
power-grid models, where frustrated synchronization and chimera states emerge. Development of a tool, based on
Kuramoto equation, for power-grid cascade faliure simualtion is planned. GPU based simulations of critical connectome
models is targeted.

Requirements: 
Fluent in English, C programming practice, good knowledge in statistical physics
Status: 
Finalized/Végleges