![]() Természettudományi Kar |
Tantárgy Adatlap |
Tantárgy kód | BMETESZMsMHAST-00 |
Tantárgy azonosító adatok | |||||||||
1. | A tárgy címe | Haladó alkalmazott statisztika | |||||||
2. | A tárgy angol címe | Advanced Applied Statistics with R |
3. | Heti óraszámok (ea + gy + lab) és a félévvégi követelmény típusa | 2 | + | 0 | + | 2 | f | Kredit | 5 |
4. | Ajánlott/kötelező előtanulmányi rend | ||||||||
vagy | Tantárgy kód 1 | Rövid cím 1 | Tantárgy kód 2 | Rövid cím 2 | Tantárgy kód 3 | Rövid cím 3 | |||
4.1 | |||||||||
4.2 | |||||||||
4.3 | |||||||||
5. | Kizáró tantárgyak | ||||||||
Longitudinal Data Analysis and Time Series |
|||||||||
6. | A tantárgy felelős tanszéke | Sztochasztika Tanszék | |||||||
7. | A tantárgy felelős oktatója | Dr. Kói Tamás | beosztása | egyetemi adjunktus |
Akkreditációs adatok | ||||
8. | Akkreditációra benyújtás időpontja | 2024.05.03. | Akkreditációs bizottság döntési időpontja |
Tematika | |||||||||
9. | A tantárgy az alábbi témakörök ismeretére épít | ||||||||
BSc level probability and statistics – BSc szintű valószínűségszámítás és statisztika |
|||||||||
10. | A tantárgy szerepe a képzés céljának megvalósításában (szak, kötelező, kötelezően választható, szabadon választható) | ||||||||
TTK Matematikus és Alkalmazott matematikus MSc képzések kötelezően választható tárgya |
|||||||||
11. | A tárgy részletes tematikája | ||||||||
Általános leírás: A statisztikai alapkurzusok felkészítik a hallgatókat az olyan statisztikai elemzések elvégzésére, mint a t-tesztek és a khi-négyzet tesztek, az egyszerű lineáris regresszió és az egy- vagy kétszempontos varianciaanalízis. Valós problémák esetén azonban gyakran szembesülünk olyan bonyolultabb adathalmazokkal, amelyekhez ezek a módszerek nem megfelelőek. A kurzus fő célja az adatelemzési eszköztár bővítése számos likelihood-alapú és nemparaméteres statisztikai modellel illetve megközelítéssel. A témakörök között szerepelnek az általánosított és nemlineáris regressziós és túlélési elemzési módszerek. Különös hangsúlyt kapnak az összetett függőségi struktúrákat mutató adatokkal kapcsolatos komplexitások. Az oktatási kutatásokban például a diákok teljesítményeredményei hierarchikus struktúrát mutatnak, ami sérti a függetlenségi feltételezést: az azonos osztályba járó diákok általában több hasonlóságot mutatnak, mint a különböző osztályokba vagy iskolákba járó diákok. Témakörök:
General description: Basic courses in statistics prepare individuals to perform statistical analyses such as t-tests and chi-square tests, simple linear regression, and one- or two-way ANOVA. However, practitioners are often faced with more sophisticated datasets for which these methods are inadequate. The course will teach several likelihood-based and nonparametric statistical models and approaches to develop strong data-handling capabilities. The topics include generalized and nonlinear regression and survival analysis methods. Particular emphasis will be placed on the complexities associated with data that exhibit complex dependency structures. For example, in educational research, students' performance outcomes exhibit a hierarchical structure, violating the independence assumption: students from the same class tend to share more similarities than students from different classes or schools. Topics:
|
|||||||||
12. | Követelmények, az osztályzat (aláírás) kialakításának módja | ||||||||
szorgalmi időszakban |
Regular submission of homework. Successful completion of two mid-term exams. – Házi feladatok rendszeres beadása. Két darab félévközbeni zárthelyi dolgozat sikeres teljesítése. | vizsga- időszakban |
|||||||
13. | Pótlási lehetőségek | ||||||||
Both midterm exams can be retaken, one of the two can be repeated a second time. 70% of the homework will be taken into account. – Mindkét zárthelyi megismételhető, a kettő közül az egyik kétszer is. A házi feladatoknak a 70%-a lesz figyelembevéve. |
|||||||||
14. | Konzultációs lehetőségek | ||||||||
Weekly during the lecturer's office hours and extra consultations before the midterm exam. – Heti rendszerességgel az oktató fogadó órájában illetve külön konzultáció a zárthelyi dolgozatok előtt. |
|||||||||
15. | Jegyzet, tankönyv, felhasználható irodalom | ||||||||
Judith D. Singer and John B. Willett, Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence, 2003, Oxford University Press, ISBN: 0195152964 2. K. J. Grimm, N. Ram & R. Estabrook, |
|||||||||
Growth Modeling: Structural Equation and Multilevel Modeling Approaches, 2017, Oxford University Press, ISBN: 9781462526062 3. – Alan Agresti, 2019, An Introduction to Categorical Data Analysis, 3rd Ed., Wiley, ISBN: 9781119405269 |
|||||||||
Schmid, C.H., Stijnen, T., and White, I. (Eds.). (2020). Handbook of Meta-Analysis (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315119403 |
|||||||||
Efron, B., and Tibshirani, R.J. (1994). An Introduction to the Bootstrap (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593 |
16. | A tantárgy elvégzéséhez átlagosan szükséges tanulmányi munka mennyisége órákban (a teljes szemeszterre számítva) | ||||||||
16.1 | Kontakt óra | 56 |
|||||||
16.2 | Félévközi felkészülés órákra | 20 |
|||||||
16.3 | Felkészülés zárthelyire | 50 |
|||||||
16.4 | Zárthelyik megírása | 0 |
|||||||
16.5 | Házi feladat elkészítése | 24 |
|||||||
16.6 | Kijelölt írásos tananyag elsajátítása (beszámoló) | 0 |
|||||||
16.7 | Egyéb elfoglaltság | 0 |
|||||||
16.8 | Vizsgafelkészülés | 0 |
|||||||
16.9 | Összesen | 150 |
|||||||
17. | Ellenőrző adat | Kredit * 30 | 150 |
A tárgy tematikáját kidolgozta | |||||||||
18. | Név | beosztás | Munkahely (tanszék, kutatóintézet, stb.) | ||||||
Dr. Kói Tamás |
egyetemi adjunktus |
Sztochasztika Tanszék |
|||||||
A tanszékvezető | |||||||||
19. | Neve | aláírása | |||||||
Dr. Simon Károly |