BMETE92AM37

Nyomtatóbarát változatNyomtatóbarát változat
Tantárgy azonosító adatok
A tárgy címe: 
Kalkulus 2
A tárgy angol címe: 
Calculus 2
A tárgy rövid címe: 
Kalkulus2
6
2
0
v
Kredit: 
8
Ajánlott/Kötelező előtanulmányi rend
1.Követelménytárgy kódja: 
BMETE92AM36
1.Követelménytárgy (rövidített) címe: 
Kalkulus1
A tantárgy felelős tanszéke: 
Analízis Tanszék
A tantárgy felelős oktatója: 
Dr. Pitrik József
A tantárgy felelős oktatójának beosztása: 
egyetemi docens
Akkreditációs adatok
Akkreditációra benyújtás időpontja: 
2015.02.16.
Akkreditációs bizottság döntési időpontja: 
2016.04.18.
Tematika
A tantárgy az alábbi témakörök ismeretére épít: 
egyváltozós differenciál- és integrálszámítás
A tantárgy szerepe a képzés céljának megvalósításában: 
TTK Matematika (BSc) képzés kötelező alaptárgya.
A tantárgy részletes tematikája magyarul és angolul: 

Az n-dimenziós euklideszi tér, többváltozós függvények. Skaláris szorzás és az indukált euklideszi norma Rn-en. Cauchy–Schwartz-egyenlőtlenség. A norma alaptulajdonságai. Példák: p-normák Rn-en. Az n-dimenziós euklideszi tér topológiája (nyílt, zárt, kompakt halmazok, belső pont, határpont), Cauchy-sorozatok, Rn teljessége. Borel–Lebesgue-tétel kompakt halmazokra (esetleg biz. nélkül). Függvény határértéke, folytonossága. Folytonosság topologikus jellemzése, folytonos függvény szinthalmazainak nyíltsága, zártsága. Konvex halmazok, külső pont és konvex halmaz szeparációja, diszjunkt konvex halmazok szeparációja (esetleg biz. nélkül).

Többváltozós differenciálhatóság. Differenciálható függvény. Parciális és iránymenti deriváltak, gradiens, érintősík. Jacobi-mátrix, Jacobi-determináns, láncszabály. Folytonos differenciálhatóság, többszörös deriválás, Young tétele, Taylor-formula (különösen másodrendben). Multilineáris leképezés pozitív, negatív definitsége. Konvex függvények és kapcsolatuk a második derválttal. Lokális szélsőérték, jellemzése a függvény deriváltjaival. Feltételes szélsőérték, Lagrange-multiplikátor. Banach-féle fixpont-tétel, inverzfüggvény-tétel, implicitfüggvény-tétel. Rotáció, divergencia, nabla-szimbólum, Laplace-operátor. Potenciálfüggvény létezése.

Többváltozós integrálás, vektoranalízis. A Jordan-mérték definíciója és tulajdonságai (bizonyítások nélkül). Többváltozós folytonos függvény integrálása normáltartományon. Helyettesítéses integrálás, polár- és gömbi koordinátás helyettesítés. Vonalmenti és felületi integrálás. Gauss–Osztrogradszkij és Stokes tétele, Green-tételek (az integráltételek bizonyítása csak szemléletesen történik).

Függvénysorozatok és függvénysorok. A pontonkénti határfüggvény, illetve a pontonkénti összegfüggvény. Függvénysor abszolút konvergenciája. Függvénysorozat és függvénysor egyenletes és lokálisan egyenletes konvergenciája. Folytonos függvények tere a sup-normával, Weierstrass-kritérium. A differenciálás illetve integrálás felcserélhetősége a limesszel, függvénysorok tagonkénti differenciálása és integrálása. Ismétlés: hatványsorok tulajdonságai.

Fourier-sorfejtés. Fourier-együttható, Fourier-sor. Tétel a kétszer folytonosan differenciálható periodikus függvények Fourier-soráról.

 

The n-dimensional Euclidean space, functions of several variable. Scalar product and the induced Euclidean norm on Rn. Cauchy–Schwarz inequality. The basic properties of the norm. Examples: p-norms on Rn. Topology of Rn: open, closed, compact sets, interior, boundary. Cauchy sequences, completeness of Rn. Borel–Lebesgue theorem for compact sets (possibly without proof). Limits and continuity of functions of several variable. The topological characterization of continuity, the level sets of continuous functions are open or closed. Convex sets, separation of convex sets and an exterior point, separation of two disjoint convex bodies (possibly without proof).

Differentiation of functions of several variables. Differentiable functions. Partial derivatives, gradient, tangent hyperplane, Jacobi matrix, Jacobi determinant, chain rule. Continuously differentiable functions, higher order derivatives, Young theorem, Taylor formula (specifically of order two). Multilinear mappings, positive and negative definite mapping. Convex functions and the second derivative. Local maximum, minimum and connection to the derivatives. Conditional maxima and minima, Lagrange multiplier. Banach fixpoint theorem, inverse function theorem, implicit function theorem. Rotation, divergence, nabla symbol, Laplace operator. The existence of scalar potential.

Integration of functions of several variable. Definition and properties of the Jordan measure (without proofs). Integration of a continuous function of several variable on an n-dimensional domain. Integration by substitution: polar coordinates, spherical coordinates. Integration along a path, and along a surface. Divergence theorem, Stokes theorem, Green theorems, (the proof of these theorems is only sketched).

Function sequences and series. Pointwise convergence of a sequence or series of functions. Absolute convergence of a series of functions. Uniform and locally uniform convergence. The space of continuous functions with the sup-norm. Weierstrass criterion. Interchanging differentiation and the limit, integration and the limit. Term-by-term differentiability and integrability of a series of functions. Recall: properties of power series.

Fourier series. Fourier coefficients, Fourier series. The Fourier series of a twice continuously differentiable periodic function converges uniformly.

Követelmények szorgalmi időszakban: 
Házi feladatok megoldása. ZH1, ZH2, röpzh-k teljesítése. Órákon való részvétel.
Követelmények vizsgaidőszakban: 
vizsgajegy a szóbeli és írásbeli vizsga illetve a félévközi teljesítmény alapján
Pótlási lehetőségek: 
TVSZ szerint
Konzultációs lehetőségek: 
TVSZ szerint
Jegyzet, tankönyv, felhasználható irodalom: 
Laczkovich Miklós, T. Sós Vera, Analízis II.
Elias M. Stein- Rami Shakarchi: Fourier Analysis – An Introduction
Thomas féle kalkulus
A tárgy elvégzéséhez átlagosan szükséges tanulmányi munka mennyisége órákban (a teljes szemeszterre számítva)
Kontakt óra: 
112
Félévközi felkészülés órákra: 
20
Felkészülés zárthelyire: 
32
Zárthelyik megírása: 
4
Házi feladat elkészítése: 
32
Kijelölt írásos tananyag elsajátítása (beszámoló): 
0
Egyéb elfoglaltság: 
0
Vizsgafelkészülés: 
40
Összesen: 
240
Ellenőrző adat: 
240
A tárgy tematikáját kidolgozta
Név: 
Dr. Pitrik József
Beosztás: 
egyetemi docens
Munkahely (tanszék, kutatóintézet, stb.): 
Analízis Tanszék
A tanszékvezető neve: 
Dr. Matolcsi Máté
A tantárgy adatlapja PDF-ben: