![Nyomtatóbarát változat Nyomtatóbarát változat](https://ttk.bme.hu/sites/all/modules/print/icons/print_icon.png)
1. Bevezető, alapfogalmak: empirikus háttér, eseménytér, események algebrája, valószínúség, kombinatorikus megfontolások, szitaformula, urnamodellek, geometriai valószínúség.
2. Feltételes valószínúség: alapfogalmak, teljes valószínúség tétele, Bayes tétel, alkalmazások. Sztochasztikus függetlenség.
3. Diszkrét valószínúségi változók: alapfogalmak, diszkrét eloszlás, bináris-, binomiális-, hipergeometrikus-. geometriai-, negatív binomiális eloszlások. Poisson approximáció, Poisson eloszlás. Alkalmazások.
4. Valószínúségi változók általános fogalma: eloszlásfüggvények és alaptulajdonságaik, abszolút folytonosü, folytonos szinguláris eloszlások. Nevezetes abszolút folztonos eloszlások: egyenletes, exponenciális, normális (Gauss), Cauchy. Valószínúségi eloszlások transzformáltjai, sűrűségfüggvény transzformációja.
5. Valószínúségi eloszlások jellemzői: várható érték, medián, szórásnégyzet, alaptulajdonságaik. Nevezetes eloszlásoknál ezek számolása. Ste iner tétel. Alkalmazások.
6. Együttes eloszlások: együttes eloszlásfüggvények, peremeloszlások, feltételes eloszlások. Nevezetes együttes eloszlások: polinomiális, polihipergeometrikus, tóbbdimenziós normális. Feltételes eloszlás- és sűrűségfüggvények. Várható érték vektor, kovatiancia mátrix, Schwarz tétel.
7. Nagy számok gyenge törvénye: NSZT binomiális eloszlásra (Bernoulli). Markov. és Csebisev egyenőtlenség. Nagy számok gyenge törvénye teljes általánosságban. Alkalmazás: Weierstrass approximációs tétele.
8. Binomiális eloszlás normállis approximációja: Stirling formula, DeMoivre-Laplace tétel. Alkalmazésok. Normális fluktuációk általában, Centrális határeloszlás-tétel.