Az egész számok matematikája: oszthatóság, maradékos osztás, legnagyobb közös osztó, euklideszi algoritmus, felbonthatatlan s zámok és prímszámok, a számelmélet alaptétele. Lineáris diofantikus egyenletek, moduláris aritmetika, teljes és redukált maradékrendszerek, lineáris
kongruenciák megoldása. A komplex számok fogalma, algebrai és trigonometriai alakok, a binomiális tétel, komplex számok kapcs olata a síkgeometriával, egységgyökök és primitív egységgyökök. Egyváltozós polinomok fogalma, műveletek polinomokkal, Horner-elrendezés, racionális gyökteszt, az algebra alaptétele, polinomok irreducibilitása, a Schönemann–Eisenstein-kritérium. Többváltozós polinomok, teljes és
elemi szimmetrikus polinomok, gyökök és együtthatók közti összefüggések, harmadfokú polinomok gyökeinek meghatározása.
Lineáris egyenletrendszerek két- és három változóban, sorműveletek, Gauß- és Gauß–Jordan-elimináció. R^n és alterei, lineáris kombináció, függetlenség, generált altér, bázis, dimenzió, koordinátázás, mátrix sor-, oszlop- és nulltere, megoldások tere, megoldás a sortérben. Mátrixműveletek, inverz, koordinátacsere mátrixa. Műveletek speciális mátrixokkal, PLU-felbontás, egyenletrendszer megoldása PLU-felbontás segítségével. Determináns mint paralelepipedon térfogata, alapvető tulajdonságok, mátrix determinánsa, permutáció fogalma, transzpozíciók, ciklusok, determináns kifejtése. Laplace-féle kifejtési tétel, determinánsok szorzástétele, mátrix inverze a Cramer-szabállyal. Mátrix rangjának alapvető tulajdonságai. Lineáris leképezések és mátrixuk: altérre való merőleges vetítés mátrixa. Mátrixok hasonlósága. Egyenletrendszer optimális megoldásai, normálegyenlet, egyetlen megoldás a sortérben és annak minimalitása. Moore–Penrose-féle általánosított inverz.