Elemi absztrakt algebra: Komplex számok és aritmetikájuk. Algebrai, trigonometrikus és exponenciális ábrázolások. Euler képlete. A komplex számok kapcsolata a síkgeometriával, egységgyökök és primitív egységgyökök. Elemi függvények. Polinomok algebrája. Az algebra alaptétele.
Vektorterek: Motiváció. Lineáris függetlenség és bázisok. Közvetlen összegek. Belsőszorzat terek. Ortogonális halmazok..
Lineáris egyenletek és mátrixok: Lineáris egyenletrendszerek. Elemi sorműveletek. Sor- és oszlopterek. Lineáris egyenletrendszerek megoldásai. Mátrixalgebra. Invertálható mátrixok. Elemi mátrixok.
Determinánsok: Permutációk. A Levi-Civita szimbólum. Definíciók és elemi tulajdonságok. A determinánsok további tulajdonságai. Determinánsok és lineáris egyenletek. Kofaktorokkal való kifejtés.
Lineáris transzformációk és mátrixok: Lineáris transzformációk és tulajdonságok. Mátrixreprezentációk. Bázisváltás. Ortogonális transzformációk. Tükrözések, forgatások és vetítések.
Sajátértékek és sajátvektorok: Sajátértékek és sajátvektorok. Karakterisztikus és minimálpolinomok. Blokkmátrixok. Invariáns alterek. Bővebben a diagonalizálásról. Spektráltétel. Normál mátrixok diagonalizálása. A szinguláris érték szerinti dekompozíció.
Numerikus és algoritmikus megközelítés: Az LU- és QR-faktorizálás. A legkisebb négyzetek módszere. A Jacobi-féle sajátérték algoritmus szimmetrikus mátrixokra.
Operátorok és diagonalizáció: Az adjungált operátor. Normál operátorok. Bővebben az ortogonális transzformációkról. Vetítések. A spektrálfelbontás tétel. Pozitív operátorok. Az exponenciális sor mátrixokra.
Elementary Real Analysis: Complex Numbers and Their Arithmetics. Algebraic, Trigonometric and Exponential Representations. Euler's Formula. The complex plane. Roots and primitive roots of unity. Elementary Functions. Algebra of polynomials. The Fundamental Theorem of Algebra.
Vector Spaces: Motivation. Linear Independence and Bases. Direct Sums. Inner Product Spaces. Orthogonal Sets.
Linear Equations and Matrices: Systems of Linear Equations. Elementary Row Operations. Row and Column Spaces. Solutions to Systems of Linear Equations. Matrix Algebra. Invertible Matrices. Elementary Matrices.
Determinants: Permutations. The Levi-Civita Symbol. Definitions and Elementary Properties. Additional Properties of Determinants. Determinants and Linear Equations. Expansion by Cofactors.
Linear Transformations and Matrices: Linear Transformations and Properties. Matrix Representations.Change of Basis. Orthogonal Transformations. Reflections, Rotations and Projections.
Eigenvalues and Eigenvectors: Eigenvalues and Eigenvectors. Characteristic Polynomials. Block Matrices. Invariant Subspaces. More on Diagonalization. Spectral theorem. Diagonalizing Normal Matrices. The Singular Value Decomposition.
Numerical and Algorithmic Approach: The LU and QR Factorizations. The Least Squares Method. The Jacobi Eigenvalue Algorithm for Symmetric Matrices.
Operators and Diagonalization: The Adjoint Operator. Normal Operators. More on Orthogonal Transformations. Projections. The Spectral Theorem. Positive Operators. The Matrix Exponential Series.