A számelmélet alapfogalmai: oszthatóság, legnagyobb közös osztó, euklideszi algoritmus, kongruenciák, kínai maradéktétel, Hensel-felemelés, primitív gyök, diszkrét logaritmus, kvadratikus maradék, Legendre és Jacobi-jel, kvadratikus reciprocitási tétel.
Kitekintés (vázlatosan): Diofantikus approximáció elmélet: Lánctörtek, Pell-egyenletek, Wiener-támadás az RSA ellen. A számelmélet kriptográfiai alkalmazásai: RSA, ElGamal titkosítási rendszerek. Prímtesztelés. p-adikus számok.
Basic Number Theory: Divisibility, greatest common divisor, Euclid's algorithm, congruences, Chinese remainder theorem, Hensel lifting, primitive roots, discrete logarithm, quadratic residues, Legendre and Jacobi symbol. Law of quadratic reciprocity.
Analytic Number Theory: Prime numbers and its properties, primes of special forms. Primes in arithmetic progressions, gaps between primes, Bertrand's postulate, the Prime Number Theorem. The Riemann zeta function, Riemann Hypothesis, Dirichlet characters. The generating function and its applications, partitions. Sieve methods, application of Brun's sieve to estimate the number of twin primes, Goldbach's conjecture. Additive and multiplicative arithmetic functions. Additive Number Theory: Sumsets, direct and inverse problems. Sum-product estimates.
Combinatorial Number Theory: Schnirelman density, Schur's theorem, van der Waerden's theorem, Szemerédi's theorem about arithmetic progressions. Zero-sum combinatorics: the polynomial method, Combinatorial Nullstellensatz, applications.
Diophantine equations: sum of two, three, four squares, representations as the sums of k-th powers, Waring problem. Fermat's last theorem. Mordell equation. The abc conjecture.
Miscellaneous modern topics (sketch only): Number Theory in Cryptography: The RSA and the ElGamal scheme. Primality tests. Diophantine Approximation Theory: Continued fractions. Pell equation. Wiener attack against RSA. p-adic numbers.